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Bayesiarplanet searches for the 10 cm/s
radial velocity era

Intrinsic stellar variability has become the main limiting factor for
planet searches in both transit and radial velocity (RV) data. New
spectrographs are under development like ESPRESSO and EXPRES
aim to improve RV precision by a factor of approximately 100 over the
current best spectrographs, HARPS and HARPThis will greatly
exacerbate the challenge of distinguishing planetary signals from stell
activity induced RV signals.

At the same time good progress has been made in simulating stellat
FQUAQGAGE aAdylftaod 4G GKS t 2NI?2
XavierDumusqguechallenged the community to a large scale blind test
using the simulated RV datat the 1 m/s level of precision, to
understand the limitations of present solutions to deal with stellar
signals and to select the best approach.

My talk will focus on some of the statistical lesson learned from this
challenge with an emphasis on Bayesian methodology.



This is how Debra Fischer portrayed the problem at the recent
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We have worked hard over the past 2 decades to improve RV precision.
Now seem to be at a point where the largest terms in the error budget are
similar magnitude. As we push down, we may encounter new surprises.



Need to use the right tool

DebraFischer




If we eliminate all other error sources except stellar noise, we
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Key challenge for statistical analysis
IS to separate planetary signals
from stellar activity induced signals.



Stellar activity

Time Scale Vel. noise Type of activity  Partial solutions

~ 10 years 17 20m/s  Magnetic cycle correlation
1071 50d few m/s Active regions a) correlation

spotsandplages b) FFO ana
Gaussian process

15mint 2d few m/s Granulations ave. 3x10 min/night
reduce to ~ 0.5 m/s
~1hr <lm/s Flares

< 15 min few m/s Oscillations ave. for 15 min
reduce to ~ 0.2 m/s



THE KEPLER FITTING CHALLENGE

(https://rv-challenge.wiki .com)
(Google rv challenge wikispace)
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THE DATASET

(https://rv-challenge.wikispaces.com)
(Google rv challenge wikispace)

DATA

15 data sets

OBSERVABLES

RV, BIS SPAN, FWHM, Log(R’hk)
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ANALYSIS

e 24 groups where interested (~55 persons)
e Results from 8 groups
* 5 groups analyzed the 15 RV curves
e 2 groups only looked at the first 5 systems

* 1 group analyzed only 2 systems
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PLANET DETECTION

P

Vs

" Bona-fide planet
B Probable planet and correct - Probable planet but mistake
Bl Bona-fide planet but wrong K or P [l Bona-fide but mistake

B Probable planet and wrong K or P i} Planet not detected with K > 1 m/s
XAVIER G\fA DUMUSQUE
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TAKE AWAY MESSAGE

BEST TECHNIQUES
MOVING AVERAGE

GAUSSIAN PROCESS
APODIZED KEPLERIAN

RED NOISE MODELS

BAYESIAN FRAMEWORK

XAVIER @ A DUMUSQUE



TAKE AWAY MESSAGE

SIMULATED DATA

Are not bad, similarity with real datasets

K>1M/S

90% of signal recovered

K< 1 M/S

10% of signal recovered

XAVIER @A DUMUSQUE



Developed a new approach for
the RV challenge based on
ApodizedKeplerianModels



TheapodizedKeplermodel approach

signals present as modified Kepler signgsh

1.0

Phil GregoryJuly 2015)
| exploredthe challengeRV data by modeling the  University of British Columbia

Test data results

modelincluded a correlatiomerm betweenRV and
the stellar activity diagnostic log( )Kapd an extra
Gaussian noise term.

In these models each K parameter was multlpllea '_
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Since a true planetary signal spans the duration o]

the data theapodizationtime, _, will be large while *
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a stellar activity induced signal will generally have &

small _ value.
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The model parameters were explored using fusioft

MCMC and a differential version of the Generalized

LombScarglelgorithm.
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The figure shows plots of MCMC parameter
estimates for a 5 signal model fit to the test data,
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Apodlzedwmdow width

known to have one planet with a period of 16 d.
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Radial velocity model fom signals (planets + stellar activity
plus Infv Q XKinhear regression term

- - - (?Li — tja)g
v(t:) =V + ) | Kjexp[—- =

i=1 !
+ 3 x In[R'hk](t;)

| X (cos{b;(ti + \;Pj) +w;j} + ¢jcosw;)

m = the number ofapodizedKepler signals in model.
Linear regression term just another fit parameter in the MCMC.

Current analysis assumes multipiedependentKeplerianorbits which
breaks down for near resonant orbits.



Raw RV and the FWHM and WnQ Kdijagnostics for Test data set

RV im/s)

FWHM

logiR'hk)

RV test data
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red = RV test. blue = best log|R'hk] linear fit to RV: black = difference

Top panel N R .
. 3 RV std. dev. = 8.55 Test d ata !
Red points shows the raw RV .} :
test data, } : "8 i
Bluepoints show the best £ } | ; ‘{ }‘ i
loglw Q)Hifjear fitto the RV & § 4 ‘ v
data, and . ¥
Blackpoints = the difference. i i EH%
(call this RVrk corrected) T commimvaamean - :
Time

red = FWHM test: blue = best log|R'hk| linear fit to FWHM; black = difference

Bottom panel

| 100p FWHDM std. dev. = 26.23 Test data
Red pointsshows the raw ;
FWHM test data, A :
Bluepointsshow the best £ '
logiw Q)Kifjear fit to the = :
FWHM data, and i i
Blackpoints= the difference. s} §x.
(Call this FWHMltk corrected) | ....rmianese

which is used as a control.) 0 500

Time



Generalized Lomiscargle(GLSperiodogramof RV and FWHM (botink corrected).

Control

The GL$eriodogrammeasures theelative . %-reduction,p(- ) , asa function of

frequency. and is normalised to unity by, (the .2 for the weighted mean of the
data).

New: aBayesian version of GLS now availabl&oftier et al., arXiv:1412.0467.pdf



